Dari sudut pandang geometri, nilai mutlak dari x ditulis | x |, adalah jarak dari x ke 0 pada garis bilangan real. Karena jarak selalu positif atau nol maka nilai mutlak x juga selalu bernilai positif atau nol untuk setiap x bilangan real.
Secara formal, nilai mutlak x didefinisikan denganatau dapat pula ditulis
| x | = -x jika x ≥ 0
| x |Sebagai contoh,
| 7 | = 7 | 0 | = 0 | -4 | = -(-4) = 4
Jadi, jelas bahwa nilai mutlak setiap bilangan real akan selalu bernilai positif atau nol.
Persamaan hanya bernilai benar jika x ≥ 0. Untuk x < 0, maka . Dapat kita tulisJika kita perhatikan, bentuk diatas sama persis dengan definisi nilai mutlak x. Oleh karenanya, pernyataan berikut benar untuk setiap x bilangan real.Jika kedua ruas persamaan diatas kita kuadratkan akan diperolehPersamaan terakhir ini merupakan konsep dasar penyelesaian persamaan atau pertidaksamaan nilai mutlak dengan cara menguadratkan kedua ruas. Seperti yang kita lihat, tanda mutlak bisa hilang jika dikuadratkan. = -x jika x < 0
| x | = -x jika x ≥ 0
| x |Sebagai contoh,
| 7 | = 7 | 0 | = 0 | -4 | = -(-4) = 4
Jadi, jelas bahwa nilai mutlak setiap bilangan real akan selalu bernilai positif atau nol.
Persamaan hanya bernilai benar jika x ≥ 0. Untuk x < 0, maka . Dapat kita tulisJika kita perhatikan, bentuk diatas sama persis dengan definisi nilai mutlak x. Oleh karenanya, pernyataan berikut benar untuk setiap x bilangan real.Jika kedua ruas persamaan diatas kita kuadratkan akan diperolehPersamaan terakhir ini merupakan konsep dasar penyelesaian persamaan atau pertidaksamaan nilai mutlak dengan cara menguadratkan kedua ruas. Seperti yang kita lihat, tanda mutlak bisa hilang jika dikuadratkan. = -x jika x < 0



